An Hybrid Fuzzy Variable Neighborhood Particle Swarm Optimization Algorithm for Solving Quadratic Assignment Problems
نویسندگان
چکیده
Recently, Particle Swarm Optimization (PSO) algorithm has exhibited good performance across a wide range of application problems. A quick review of the literature reveals that research for solving the Quadratic Assignment Problem (QAP) using PSO approach has not much been investigated. In this paper, we design a hybrid meta-heuristic fuzzy scheme, called as variable neighborhood fuzzy particle swarm algorithm (VNPSO), based on fuzzy particle swarm optimization and variable neighborhood search to solve the QAP. In the hybrid fuzzy scheme, the representations of the position and velocity of the particles in the conventional PSO is extended from the real vectors to fuzzy matrices. A new mapping is introduced between the particles in the swarm and the problem space in an efficient way. We also attempt to theoretically prove that the variable neighborhood particle swarm algorithm converges with a probability of 1 towards the global optimal. The performance of the proposed approach is evaluated and compared with other four different algorithms. Empirical results illustrate that the approach can be applied for solving quadratic assignment problems effectively.
منابع مشابه
Hybrid Metaheuristics Algorithms for Inventory Management Problems
The hybrid metaheuristics algorithms (HMHAs) have gained a considerable attention for their capability to solve difficult problems in different fields of science. This chapter introduces some applications of HMHAs in solving inventory theory problems. Three basic inventory problems, joint replenishment EOQ problem, newsboy problem, and stochastic review problem, in certain and uncertain environ...
متن کاملFuzzy particle swarm optimization with nearest-better neighborhood for multimodal optimization
In the last decades, many efforts have been made to solve multimodal optimization problems using Particle Swarm Optimization (PSO). To produce good results, these PSO algorithms need to specify some niching parameters to define the local neighborhood. In this paper, our motivation is to propose the novel neighborhood structures that remove undesirable niching parameters without sacrificing perf...
متن کاملVariable Neighborhood Particle Swarm Optimization for Multi-objective Flexible Job-Shop Scheduling Problems
This paper introduces a hybrid metaheuristic, the Variable Neighborhood Particle Swarm Optimization (VNPSO), consisting of a combination of the Variable Neighborhood Search (VNS) and Particle Swarm Optimization(PSO). The proposed VNPSO method is used for solving the multi-objective Flexible Job-shop Scheduling Problems (FJSP). The details of implementation for the multi-objective FJSP and the c...
متن کاملA Particle Swarm Optimization Algorithm for Mixed-Variable Nonlinear Problems
Many engineering design problems involve a combination of both continuous anddiscrete variables. However, the number of studies scarcely exceeds a few on mixed-variableproblems. In this research Particle Swarm Optimization (PSO) algorithm is employed to solve mixedvariablenonlinear problems. PSO is an efficient method of dealing with nonlinear and non-convexoptimization problems. In this paper,...
متن کاملA Particle Swarm Approach to Quadratic Assignment Problems
Particle Swarm Optimization (PSO) algorithm has exhibited good performance across a wide range of application problems. But research on the Quadratic Assignment Problem (QAP) has not much been investigated. In this paper, we introduce a novel approach based on PSO for QAPs. The representations of the position and velocity of the particles in the conventional PSO is extended from the real vector...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. UCS
دوره 13 شماره
صفحات -
تاریخ انتشار 2007